
N A S A  C O N T R A C T O R  

R E P O R T  

SUPERSONIC  FLUTTER  OF A 
THERMALLY  STRESSED  FLAT 
PLATE WITH EDGE STIFFENERS 

by Hurmohun Singh Sikund and Charles Libove 

Prepared by 
SYRACUSE  UNIVERSITY 
Syracuse, N. Y .  
for Langley Research Center 

NATIONAL  AERONAUTICS  AND  SPACE  ADMINISTRATION WASHINGTON, D. C. M A Y  1970 



TECH LIBRARY KAFB, NY 

C U  s 

J NASA CR-1574 

V‘ SUPERSONIC  FLUTTER  OF  A THERNIALLY  STRESSED  FLAT 

PLATE WITH EDGE STIFFENERS* 

l /  / By Harmohan  Singh  Sikand  and  Charles   Libove 

Distr ibut ion of t h i s   r e p o r t  is p rov ided   i n   t he   i n t e re s t  of 
information  exchange.   Responsibi l i ty   for   the  contents  
resides in   t he   au tho r  or  organiza t ion   tha t   p repared  it. 

; 5- & 
Issued  by  Originator  as Report  No.  ME  1065-699 

* T h i s   r e p o r t   w a s   s u b m i t t e d  as a thes i s   by   t he  A ‘ ‘ Q A - . ~  

first author   in   par t ia l   fu l f i l lment  of t h e   r e q u i r e -  
m e n t s   f o r   t h e   M a s t e r  of Mechanica l   Engineer ing  
Degree,   October   1969.  

- 

y2h’;/ b 
Prepared  under   Grant   No.   NsG-385  by 

S y r a c u s e ,  N.Y. 
b- e ,  YSYRACUSE UNIV- 

for Lang ley   Resea rch   Cen te r  

NATIONAL  AERONAUTICS AND SPACE ADMINISTRATION 
~ .~I___ 

For  sale by the  Clearinghouse  for  Federal  Scientif ic  and  Technical  Information 
Springfield,  Virginia 22151 - CFSTl price $3.00 





ABSTRACT 

The effect  of midplane stresses (uniform or non-uniform) due to  

prescribed  temperature d i s t r i b u t i o n s  over a simply supported isotropic 

rectangular  plate w i t h  edge stiffeners on the f lu t t e r  behavior of the 

plate when subjected  to  supersonic  airflow over one surface is considered. 

The aerodynamic loading i s  assumed t o  be given by the two dimensional 

s t a t i c  aerodynamics or the Ackeret theory. In a d d i t i o n  t o  the thermal 

and aerodynamic loading,  the  analysis  includes  external  in-plane  loadings 

distributed along each p a i r  of opposite  stiffeners. 

All four stiffeners  are assumed t o  be uniform and t o  possess 

finite  axial  st’l’ffness and e i ther  zero or inf ini te  bending stiffness i n  

the plane of the  plate. The plate edges are assumed t o  be integral 151 

attached t o  the  stiffeners along the  centroidal axes of the  st iffeners,  and,  

in accordance w i t h  the sl’mple support  assumption, are assumed t o  provide 

infinite  restraint  against  lateral  deflection and no restraint  against 

r o t a t i o n .  

The analysis  is  carried o u t  in two parts. In the f i r s t  p a r t ,  

the midplane stresses for the  particular  prescribed  temperatures  are 

evaluated, and i n  the second p a r t  the   f lut ter  behavior (or, more generally, 

the dynamic response) i s  determined. In evaluating  the midplane stresses,  

Fourier  series  are used. In determining  the f l u t t e r  boundary Galerkin’s 

technique is. adopted. 

The cases  investigated  are: 

I )  Rectangular plate w i t h  edge stiffeners of zero bending stiffness and 

f inite  axial   st iffness,  and a pillow-shaped temperature distribution 

( i  .e. , varying as h a l f  a si  ne  wave i n  both directions )a 

2 )  Rectangular plate w i t h  edge stiffeners o f  inf ini te  bending stiffness 

iii 
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and finite  axial   st iffness,  and. a pillow-shaped temperature  distribution. 

3)  Rectangular plate w i t h  edge stiffeners of inf ini te  bending stiffness 

and f inite  axial   st iffness,  w i t h  a temperature distribution  discontinuous 

as follows:  the  plate  temperature i s  constant a t  one value  while the 

st iffener temperatures are  constant a t  a different  value. 

Although the  general  analysis i s  as described above, numerical 

results were  computed only for a square  plate w i t h  a l l  four st iffeners 

identical, and no external loading  except for the aerodynamic loading. 

The numerical results show t h a t  the f lu t t e r  boundary is significantly 

affected by the a x i a l  s t iffness of the  stiffeners,  the  flexural  stiffness 

of the  stiffeners and the  type of temperature distribution. 
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INTRODUCTION 

One of the problems t o  be considered i n  the  design of modern 

high-speed aerospace  vehicles i s  the f lu t t e r  of external  'skin  panels i n  

the  supersonic  regions of f l ight.   Flutter  is  an aeroelastic,   self-  

excited v i b r a t i o n  i n  which the  external  source of energy i s  the  airstream. 

A large number of parameters  influence  this phenomenon.  The purpose of 

the  present paper i s  t o  investigate  the  effect of one of these  parameters, 

namely, thermally induced midplane stresses. 

A prior  investigation of this k i n d  was  made by Schaeffer and Heard 

(ref.l)who  studied  the  supersonic f lu t t e r  behavior of a f l a t  rectangular 

plate w i t h  uniform edge loading i n  both directions and a non-uniform 

temperature distribution which varied parabolically i n  both directions 

over the plate b u t  was constant through the thlckness. The edges of the 

plate were  assumed t o  be simpiy supportea, b u t  otherwise  free of any 

external  constraint. 

The present  investigation  is  similar t o  Schaeffer and Heard's 

b u t  introduces  different  conditions w i t h  regard t o  external  constraint. 

The edges are s t i l l  considered t o  be simply supported ( i . e . ,  t o  have zero 

lateral  deflection and zero normal  bending  moment), b u t  are assumed t o  be 

integral ly  attached t o  st iffeners of f i n i t e  ax ia l  st iffness along their  

centroidal  axes. With regard t o  the  flexural  stiffness of these  stiffeners 

for bending i n  the plane of the  plate, two 1 imi t i n g  cases  are  considered: 

zero flexural  stiffness and.  infinite  f lexural  st iffness.  The l a t t e r  case 

corresponds t o  the situation i n  which the edges are held straight or nearly 

straight because of the continuity between the  plate and neighboring 

plates  across  the  stiffeners; the former corresponds t o  the case i n  w h i c h  

t he re   i s   l i t t l e  or no surrounding  material beyond the edge stiffeners.  



The simple support  assumption implies t h a t  the edge stiffeners  are 

considered t o  have negligible  torsional  stiffness. 

The main difference between the  present  investigations and Schaeffer 

and Heard's l i es  i n  the edge conditions  as  described above. However, 

there  are two minor differences between the  present paper and reference 1 

w i t h  regard t o  external loading and temperature d i s t r ibu t ion :  Whereas 

reference 1 considers a uniform b iax ia l  external loading , the  present 

work considers, a b i a x i a l  loading which  need only be symmetric about 

each center Tlne of the  plate. And while  reference 1 employs a parabolic 

temperature d i s t r i b u t i o n ,  the  present  analysis assumes a sinusoidal one. 

In a d d i t i o n ,  for  the  case of flexurally r i g i d  stiffeners  only,  the  present 

paper also  considers a discontinuous  temperature  distribution w i t h  the 

st iffener temperature  constant a t  one value and the  plate temperature 

constant a t  a different  value. As i n  reference 1 , the  temperature is 

assumed i n  a1 1 cases not  t o  vary through the  thickness. 

The analysis  consists of two parts:  the  evaluation of the midplane 

stresses due t o  the  temperature  distrdbution  as well as external  loading, 

and the  flutter  analysis  proper, using these midplane stresses. For the 

evaluation o f  the midplane stresses  the  techniques of references 2 and 3 

are mainly employed,  which are based on double Fourier series.  The 

flutter  analysis  is  executed by  means  of the  Galerkin method i n  the manner 

of reference 1 .  As i n  reference 1 , the aerodynamic loading i s  assumed 

t o  be given by the two dimensional s t a t i c  aerodynamics or Ackeret theory. 

For the  special  case of the  plate w i t h  flexurally r i g i d  edge stiffeners and 

discontinuous  temperature  distribution  (stiffener  temperature  constant a t  

one value,  plate  temperature  constant a t  a different  value), i t  was found 

t h a t  the midplane s t ress  problem could be solved by elementary  considerations, 
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leading t o  a homogenous s ta te  of stress i n  the  plate, and then the  solution 

t o  the  f lut ter  problem could be extracted from the  results of reference 1 

by merely redef i n i  ng certai n parameters. 

Based on the  general  analysis, numerical results  are computed for  

the  case of a square  plate w i t h  all  stiffeners  identical and no external 

loading. For the  sinusoidal  (hereinafter  called  "pillow-shaped")  temperature 

distribution  calculations were made for  both the  zero and infinite  flexural 

stiffness  cases. For the  discontinuous  temperature d i s t r i b u t i o n  numerical 

results  are given only for  infinite  flexural  stiffness  case. 

The numerical results  for  these  three cases are compared w i t h  each 

other. Those for  the pillow-shaped temperature distribution  are compared 

with those of Schaeffer and Heard in order t o  indicate  the  effect of the 

edge stiffeners.  As i s  t o  be expected,  for a given amplitude of temperature 

the presence of the  stiffeners  raises  the general magnitude  of the  in-plane 

thermal compressive stresses and thereby lowers the f lu t t e r  boundary. For 

the same reason,  the  fluexurally  rigid  stiffeners lead t o  a greater 

lowering of the f lu t t e r  boundary t h a n  do the  perfectly  flexible  stiffeners; 

and the  discontinuous  temperature  distribution  leads t o  a greater lowering 

of the  f lut ter  boundary t h a n  does the pillow-shaped temperature, i n  the 

case of flexurally  rigid  stiffeners. 
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DETAILED  DESCRIPTION OF STRUCTURE AND LOADING 

The configuration of plate and s t i f feners   i s  shown schematically !n 

Figure 1. The plate is  rectangular and f l a t ,  of length a ,  w i d t h  b ,  and 

thickness h .  Any p o i n t  on the  plate  is  defined by i ts  x and y co- 

ordinates  in  the  Cartesian  reference frame whose axes coincide w i t h  two 

adjacent edges of the  plate, as shown i n  Figure 1 .  The structure  is  

symmetric about each  of i t s  two center  lines. Thus the  cross-sectional 

areas of the  stiffeners  located along x = 0 and x = a are both denoted 

by the same  symbol A l ,  and the  cross-sectional  areas of the  stiffeners 

a t  y = 0 and y = b are bo th  denoted by A,.  I t  i s  assumed t h a t  the 

st iffener axes coincide w i t h  the  plate edges. 

The plate  is  homogeneous, e las t ic ,  and i sotropic, w i t h  Young's 

modulus E, and Poisson's  ratio v ,  and coefficient of thermal expansion CI 

The stiffeners  are assumed t o  have the same Young's  modulus and the same 

thermal expansion coefficients as the  plate. 

The temperature distributions T(x,y) are  also taken symmetric 

abou t  each center  line of the  structure. The  pi llow-shaped temperature 

distribution  is defined by 

where P and Q are bo th  equal t o  unity* and e i s  the  value of the 

temperature a t  the  center of the  plate. The discontinuous  temperature 

*By superimposing terms o f  this  type, w i t h  P and  Q having different 
combinations of odd values and  the e i n  each  term being a function of 
P and Q, one  can approximate any  symmetric temperature distribution. 
The stresses due t o  such a temperature distribution can then be obtained by 
superimposing the  stresses due t o  the  individual  terms. I t  i s   fo r   t h i s  
reason t h a t  the subsequent analysis i s  carried t h r o u g h  w i t h  P and Q 
l e f t  as symbols rather t h a n  being replaced by their  numerical value of 
prime interest ,  unity.  
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d i s t r i b u t i o n  i s  defined by T = 0 along  the st iffeners and T = e = constant 

over the  plate. In bo th  cases  the  temperature T(x,y)  is measured w i t h  

respect  to some  datum temperature distribution  for which the  structure  is 

assumed t o  be s t ress   f ree  i n  the absense of external  loads. 

The external edge loadings  are  also taken t o  be symmetric about  

each center 1 i ne of the  plate. For the  case o f  perfectly  flexible 

stiffeners  these loadings are assumed t o  be nonuniform as shown i n  

Figure. 1 N1 (y) denotes  the  force per unit length (positive  for  tension) 

acting on the  stiffeners a t  x = 0 and x = a ,  N3(x) the  force  per 

u n i t  length on the  other p a i r  of st iffeners.  

For the  case of flexural  ly r i g i d  stiffeners i t  i s ,  of course, 

imnaterial , as fa r  as  the  plate  stresses and f l u t t e r  behavior are concerned, 

what the  actual  distribution of the  external  loading i s   l i k e .   I t   i s  only 

the  resultant  force on each edge t h a t  is   significant i n  influencing  the 

plate' behavior. In the  present paper these  resultant  forces  are denoted 

by T, (positive  for  tension)  for  the  stiffeners a t  x = 0 and x = a ,  

and by T3 for the st iffeners a t  y = 0 and y = b, and they  are 

assumed t o  act a t  the  center of each stiffener as shown i n  Figure 2. 

The a i r  i s  assumed t o  be flowing  over one surface of the  plate  in 

the x-di rection  (see F i g  1 ) a t  a supersonic Mach  number of M .  When 

the  plate  is   perfectly  f lat   the a i r  stream produces no lateral  force upon 

i t .  When the  plate  deflects, however, the air  stream exerts  lateral 

pressures which are assumed t o  be  gi-ven  by the 1 ineari zed , s t a t i c ,  two 

dimensional supersonic aerodynamic theory or Ackeret theory. According 

t o  this  theory, which i s  said t o  be accurate  for Mach  number greater t h a n  

1.3 (ref.  4) , the aerodynamic tension "II" on the  plate  surface due t o  

an air  stream  flowing i n  the  positive  x-direction  is given by 
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where 

q* = 112 pv2  

V = velocity o f  a i r  stream 

P = mass density of a i r  

w(x ,y , t )  = lateral  plate  deflection 

t = time 

and the a i r  i s  flowing over t h a t  surface of the  plate which i s  on the 

positive w side. The  minus sign i n  the formula indicates t h a t  for 

these  conditions a positive  slope  will produce a local  pressure ( i . e . s  

negative aerodynamic tensi o n ) .  

The partial  differential equation governing the motion of the  plate 

for  small lateral  deflections, and w h i c h  will form the  basis of the 

subsequent flutter  analysis  is  

II 

where 

p = plate  density (mass per unit volume) 

D =  = plate  flexural  stiffness Eh 

and comas  indicate p a r t i a l  differentfation w i t h  respect t o  the 

subscripted co-ordi nates. 

Thl’s plate  partial  differential  equation is  equation (217) of 

reference 5 w l ’ t h  the  lateral loading term q i n  t h a t  equation  expressed 

i n  terms o f  the aerodynamic tension R and the  inertia loading due t o  

6 



plate   mot ion.  It must be  solved  subject   to   the   fo l lowing boundary  conditions 

of  simple  support:  

w ( o , Y , ~ )  = w(a,y, t )  = w(x,o, t )  = w(x,b,t)  = o 

(3)  

w3,, (oS~.t )  = ~ , ~ ~ ( a , y , t )  = w ,YY (x,o, t )  = w 'YY (x,b, t )  = o 



EVALUATION OF PLATE STRESSES 

This section  will  describe  the  evaluati.on of the  inplane  plate 

stress  resultants  required as prerequisites for the  determination of the 

f lu t t e r  behavior. These stresses  are shown schematically i n  Figure 3;  

they are denoted by Nx and N for the normal stress  resultants and 

by Nxy for  the  shear  stress  resultant and have the dimensions of force 

per u n i t  length.  Figure 3 a l s o  shows-. the nota t ion  for  the  internal 

stiffener  cross-sectional  tensions, namely Pl (y)  for  the x = 0 and a 

s t i f feners ,  P 3 ( x )  for the y = 0 and b st iffeners.  PI (y) and P 3 ( x )  

have the dimensions of force. 

Y 

Case 1: Pillow-Shaped ~ Temperature ~~ Distribution,  Perfectly  Flexible ~ . 

Stiffeners . 
For the  case of perfectly  flexible  stiffeners,  reference 2 treats 

a greatly  generalized  version o f  the  stress problem considered  here. In 

reference 2 the  plate may be orthotropic or isotropic,  the  structure, 

l o a d i n g ,  and temperature distribution  are not  necessarily symmetric, and 

the  external loading may include stiffener end tensions and shear flows 

acting along the  outer  periphery of the  stiffeners. 

Therefore  the  plate  stresses  required for the  present  investigation 

can  be obtained from the  equations of reference 2 by specializing  those 

equations i n  accordance w i t h  the more restricted  nature of the  present 

configuration, t h a t  i s  by o m i t t i n g  the  external  shear flows and st iffener 

end tensions,  incorporating  the symmetry of the  structure, loading and 

temperature distribution, and expresstng  the  orthotropic  elastic  constants 

i n  terms of the  isotropic  ones, E and v. 
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The derivations i n  reference 2 are based upon the  plate  compatibility 

equation,  the  stiffener  axial  equilibrium equations, the  condition of 

compatibility of strain between  each stiffener and the  plate edge t o  which 

i t  i s  attached,  the boundary  condi t-ions of prescribed  loading, and the 

expansion of a1 1 known and unknown quantities i n  terms of Fourier  series. 

I t  is l e f t  t o  the  interested  reader t o  see  reference 2 for  these  derivations. 

Here only the  specialized  results of reference 2 needed for  the  present 

purpose will be given.. The results  for  the  stiffener  stresses, although 

no t  needed for  the  flutter  analysis o f  the  plate,  will be given as ad- 

d i  t i  onal i nformati on of i nteres t . 
In order t o  use the  results o f  reference 2 we require, not  the 

temperature d i s t r i b u t i o n  i t s e l f ,  b u t  the thermal strains t h a t  i t  would 

produce i f  every infinitesimal element of the  structure were free t o  

undergo i t s  thermal expansion unrestrained. These thermal strains  are 

shown schematically  in  Figure 4 .  For‘ the  nlate they will be denoted by 

ex(x,y) and e (x ,y)  i n  the x and y directions  respectively. For 

the  stiffeners a t  x = 0 and a they  will be denoted by e l ( y ) ,  and 

f o r  the  stiffeners a t  y = 0 and b by e3(x) .  Under the  present 

assumptions of isotropy and uniformity of material  properties and a 

pillow-shaped temperature distribution,  these  strains  are 

Y 

( 4 )  
el = e3 = 0 

Reference 2 further  requires t h a t  certain functiorcsof these thermal 

strains be expressed i n  the form  of Fourier  series as  follows: 
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m 

n odd 

m 

m odd 

a 2e +x = sin - sin for o X < a mlrx 
aY2  a2e f f Tmn a 

m,n odd O < y < b  

In the  present  case, w i t h  ex,  ey,  el , e3 as given by equation ( 4 ) ,  

the above Fourier  coefficients  are  readily seen t o  be 

Similar ly ,  reference 2 requires t h a t  the  external edge loadings be 

known i n  the form o f  Fourier  series as  follows: 

n odd 

m 

N3(x) = Bml "  sin - mTx for o < x < a a 
m odd 

For the  case of uniform edge loading (Nl(y) = constant = N1 , N3(x) = 

constant = N 3 )  the Four 

Bn' = 4Nl/(nr) and Bm' 

ier   coefficients 

' I  = 4N3/(mn).  

i n  these  ser ies would  be given by 

10 



With the above Four ier   Coef f ic ients  known, reference 2 then  y ie lds 

the   f o l l ow ing   se r ies   f o r  computing  the  plate  stress  resultanqs and s t i f f e n e r  

tensions i n  the  cas0 where structure,  loading, .and temperature  d is t r ibut ion 

are  symmetric  about  each  center l i n e   o f   t h e   p l a t e :  

M N  O < y < b  

m,n odd 

N ,  
= i ' s i n ?   f o r  0 . y .  b 

Y x = ~ o r a  'n 
n odd 

N 

n  odd 

mrx s i n  - a f o r  O < x < a  
m odd 

( In   re ference 2,  which   cons idered  the   poss ib i l i t y   o f   s t i f fener  end tensiQns 

as par t   o f   the   ex te rna l   load ing ,   the  pbove ser ies  for  Pl(y) and P3(x)  

11 



p1 (Y 1 
series 

valid 

and P ~ ( x )  are  actually zero a t  the end points ; and the 

for PI (y) and P ~ ( x )  i n  the  present  case  are  therefore 

were not  valid  at   the end po in t s ,  y = O,b and x = 0, a respectively, 

because they  yield  identically  zero  values  there. Consequently the  regions 

of validity  for  these  series  are  indicated above as open regions. In the 

present  case, however, since  stiffener end loads are  absent  the  values of 

above 

also 

I n  the  closed  regions 0 ~y 5 b and 0 x - < a ,  respectively.) 

The Fourier  coefficients appearing i n  the above series can  be 

evaluated l'n terms of the known Fourier  coefficients T,'(=O), Tml "(=O), 

Tmn, Bn I ,  Bm ' ' I .  The procedure i s  as follows : 

First  the g,' and cn '   are  determined by solving  the  following 

system of simultaneous  equations  (specialized form  of eqs. (B61") and 

(B63' I )  of ref .  2 ) :  

- 
'n - 6  -6 

m odd m odd 

n = 1,3, ..., N 

' [A3E + f gm 
- 

n odd n odd 

m = 1,3, ..., M 

where 
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M 

m odd 
N 
c 

n odd 

The symbols M and N which appear as upper summation limits i n  equations (8) 

and which also determine the number o f  simultaneous  equations i n  equation (9), 

are  positive odd integers whose values should be taken as large as  possible 

for the  sake of accuracy (up t o  the p o l n t  whose. round off  errors may begin 

t o  offset  accuracy) 

With the c,.' and gm' computed through equations (9) the 

remaining Fourier  coefficients  in  the  series (8) can  be readily  obtained 

from the fo l lowing  formulas: 

A1 
'n h ' = - (- Tn '  Eh + c,' - v B n ' )  

where 

1 I 
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The simultaneous  equations (9) can  be considerably  simplified if 

one deals w i t h  the  special  case of a square  plate  (a=b) w i t h  structure, 

loading and temperature symmetrical n o t  only about  the  center  lines b u t  

also about the  diagonals, i .e. a AI = A3, Bi ' = B i l l 1 ,  T i 1  = T i " ' ,  

T i j  = Tj i .  The corresponding s m e t r y   t h a t  should result  i n  the  plate and 

stiffener  stresses i s  described by the  following  equations: 

In order for this symmetry t o  be reflected i n  the results of the numerical 

calculations one chooses M and N equal. Then equations (9) reduce t o  

Thus for this highly symmetric case i t  i s  necessary t o  solve only equations 

(12) for  the Fn'. Then equations (11) immediately give  the rml. 
In order t o  provide stresses for use i n  connection w i t h  the sub- 

sequent numerical flutter  calculations  equations (12) were further 

specialized t o  the  case o f  no external  loads (Ei = Bi " I  = 01, Using 

equations (6 )  for the T n ' ,  Tm'"  and Tmn, and s u b s t i t u t i n g  (sa) for 

the R n '  , equations (12) can then be pu t  into  the  following form most 

suitable  for  calculations: 

14 



n = 1,3. . ., M 

where 
'n ' cn = - ae Eh 

4ah =q 
and 6 is Kronecker's delta. The dimensionless parameter is seen 

t o  be a measure of the ra t io  of plate  cross-sectional  area t o  s t i f fener  

cross-sectional  area. I t   i s  o f  interest  t o  note t h a t  for x 1  -+ 0, this 

system o f  equations  reduces t o  the  especially simply form: 

nQ 

With  the Cn known, equation (10) then  gives  the  foll owing Fourier  series 

coefficients for this  case: 

sn t  = AIEaeCn 

Equations (13) were solved  simultaneously for the  case of l1 = 1, 

using M = 59 and P = Q = 1. The solution was by means  of the Gauss- 

Seidel i terat ive procedure. The resulting  values o f  Cn 'are given i n  
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column (a) of Table 1. The corresponding stresses,  as given by equations (8) 

i n  conjunction w i t h  equations  (15),  are  plotted i n  Figure 6 i n  dimensionless 

form. Because of the symmetry, i t  suffices  to show results for only one 

quadrant of the  structure. 

Case 2: Pillow-Shaped Temperature Distribution, Flexural ly Rig id  Stiffeners 

The stress  analysis problem considered  here i s  a special  case of 

the problem treated i n  Appendix E of reference 3 ,  which deals w i t h  an 

edge-stiffened  rectangular  plate w i t h  each stiffener bent and held i n t o  

a prescribed shape. In the  present  case  the  prescribed shape i s  one of 

zero  curvature. Reference 3 furthermore  permits  the  plate t o  be orthotropic 

or isotropic and does n o t  require  the  structure, loading  and temperature 

d f s t r i b u t i o n  t o  possess symmetry.  In addition  the  external loading of 

reference 3 includes no t  only the  resultant  tensions T I  and T3 con- 

sidered  here  (see Fig.  i'), b u t  also  includes  resultant  external moments 

i n  the plane of the  plate,  stiffener end tensions, and shear flows acting 

along the  outer  periphery of the  st iffeners.  Therefore  the stress  analysis 

needed for the  present purpose can  be obtained by adapting  the  analysis 

of reference 3 t o  the more specialized  characteristics of the  present 

configuration. 

In the previous  case  (perfectly  flexible  stiffeners) any external 

normal loading N1 (y) and N3 (x)  was transmitted t o  the  plate edges 

th rough  the  stiffeners wi thout  any change. Thus the  coefficients B n '  

and B m " ' ,  which defined this  external loading through equations (7), 

also defined  the normal stress  resultants  acting along the  plate edge. 

In the  present  case  (stiffeners r i g i d l y  held t o  a prescribed  shape)  the 

distributions o f  normal s t ress  along the  plate edges are unknown.  If 

N1 (y) and N3 (x)  (eq. 7 )  now denote not  the  external loading  b u t  

16 
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these  distributions of normal stress  resultant along the  plate edges 

then the Bn ' and Bm' I represent two systems of unknowns for  the  present 

problem. Additional unknowns i n  the  present problem are  the mutual forces 

which the  stiffeners  exert upon each other a t  their  junctions. Despite 

the  larger number of unknowns i n  the  present problem as compared w i t h  t h a t  

of Case 1 ,  the problem is solvable by virtue o f  add i t iona l  imposed  con- 

ditions on the  present one, namely the requirements t h a t  a )  the  curvature 

of a plate edge be compatible a t  every p o i n t  with the  prescribed  curvature 

o f  the  attached  stiffener, and b )  t h a t  each stiffener be in  equilibrium 

under the  action of the  external loading , the normal stress exerted on i t  

by the  plate, and the end reactions upon i t  exerted by the  adjacent 

st iffeners.  The detailed  derivation of the  stress  analysis f o r  this  case 

will n o t  be given here. The interested  reader  is  referred t o  reference 3 

f o r  this  derivation. Here only those results of reference 3 pertinent 

tr, the  present  flutter problem will be given. The results  for  the  stiffener 

tensions  will aga in  be given as  a d d i t i o n a l  information of interest .  

Reference 3 requires  the same given basic  information on thermal 

strains as i n  Case 1 ,  namely equations (4) ,  (5) ,  and (6 ) .  In  addition 

i t  requires t h a t  two additional  thermal-strain  quantities be known in  the 

form  of Fourier ser ies ,  t o  wit: 

and i t  requires t h a t  the  prescribed  curvatures of the edge stiffeners be 

known i n  the form of the  fol lowl ng series: 
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where u(x,y) and v (x ,y )  are  the x-wise and y-wise components  of 

displacement. In the  present  case,  since  the  stiffeners  are held straight 

the  Fourier  coefficients K n l  and K,,," I will be zero, and they will 

therefore not  appear  in  the subsequent equations. In  view  of equation ( 4 )  

for  the p i  1 low-shaped temperature distributions, V n '  and V,' I I become 

The results  for  the  plate  stress  resultants and stiffener  tensions 

can again be given i n  the form  of equations (8) augmented 'by the  following 

equations : 
N 

Nx(o,y) = Nx(a,y) = B n '  s in (0 < Y < b )  

n odd 

N (x ,o)  = N ( x , b )  = 1 Bm" I sin - (0 < x < a )  mn x 
Y Y a 

m odd 

T1 P3(O+)  = P3 (a - )  = - - 2 .f Bnl 

n odd 
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The F o u r i e r   c o e f f i c i e n t s   a p p e a r i n g  i n  the above  and i n  e q u a t i o n s  (8) a r e  

de te rmined  by f irst  s o l v i n g  the f o l l o w i n g   s y s t e m   o f   s i m u l t a n e o u s   e q u a t i o n s  

far the B,', Bm" I ,  Flll and zml (adapted  f rom  eqs.   (E23)  t o  (E30) 

of ref. 3 ) :  

+ f 2 Vmnl c, '  
m odd (n = 1,3, ... N) 

n odd (rn = 1,3,. . .M) 

(n = 1,3,. . .N)  

n odd 

N - 

a 
n odd (m = 1 ,3 , .  . .M) 

19 



where 

M 

M I 
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Sn '  = A 1 E  (T) nn Tn '  - 1 m n d  2T3 
T Tmn + T 

m odd 

mn . 1 mna* 2Tl S,' I I = A3E (y) Tm" '  - TIT Tmn a + -  
n odd 

N 
I t  ] .- A 3 E  (E) 2 + - 4 m  (-)3 f Crm' - rm a E h   b a  

rl odd 

(As i n   t h e   p r e v i o u s  case, M and N are s e l e c t e d  odd i n t e g e r s  ; by 

i n c r e a s i n g  M and N i n c r e a s i n g  accuracy i s  o b t a i n e d ,   s u b j e c t  t o  t h e  

l i m i t a t i o n s   d u e  t o  r o u n d - o f f   e r r o r s . )  With t h e  B n '  , Em' ' I ,  cnl 

(= cn '  Ehb/ (nn) ) ,  q,, - ' (= gm' Eha / (ma) )   computed   t h rough   equa t ions   (20 ) ,  
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we have thus  evaluated  the  Fourier  coefficients needed i n  equation (19). 

To obtal 'n the remaining required  Fourier  coefficients, namely those i n  

equations (8), equations (10) of the  previous  case  are used. 

The simultaneous  equations (20)  can  be considerably  simplified i f  

one deals w i t h  the  special  case o f  a square  structure ( a = b )  w i t h  

symmetry not only  about  the  center  lines b u t  also about the  diagonals 

(TI = T,, AI = A,, Til = Ti I l l  , T i j  - - T j i ) .  In order  for  this physical 

symmetry t o  be reflected i n  the mathematical solution, i t  i s  necessary 

t o  pick M and N equal* Then equations (20) reduces t o  

( i  = 1 ,3,.-.,M) (22) 

M M 

M 
+ x 2 vmn cn 

- 
I I  

m odd 

M 

( n  = '1 53 ,m.  e , M )  

(n = 1,3,,..,M) 

Thus f o r  this hl'ghly symmetric case i t  i s  necessary t o  solve  only 

system (23) for  the cn' and B n l .  Then equations (22)  gives cml and B m l l l .  
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For the  la ter  numerical flutter  calculation ~ equations  (23) were 

further  special9zed  to  the  case of no external load (TI = T3 = 0)  and 

temperature distributions  as  described by equations ( l ) ,  (4) and (6). The 

resulting form  of equations  (23),  taking  into account equations  (21), is 

p odd p odd 

p odd 

( n  = 1,3, ..., M )  

( n  = 1,3,. . . ,M)  

(24) 
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where 
- Bn ' 

Bn - ae~h 
'n ' cn = - 

ae Eh 

The reduced form o f  equations (10) corresponding t o  this  specialization  is:  

. 

'n ' = A I E &  [Cn  - w B n ]  

where the Bn and Cn are computed from equations(24) I 

Equations (24)  were solved simultaneously for  the case x 1  = 1 ,  

using M = 59" and P = Q = 1 .  The Gauss-Seidel i terative procedure was 
. " .. . ... . . m,".->"-.".*.- "-11"- - 

* 
M = N = 59 was found t o  lead t o  sufficiently  accurate  results i n  reference 3.  
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employed.  The res.ul t i  ng values of Cn and Bn are given i n  columns ( b )  

and (c )  of Table 1.  The corresponding stresses,  as given by equations (8) 

and (19)  in  conjunction w i t h  equations (26), are  plotted i n  Figure 7 i n  

dimensionless form.  Because  of the symnetry the  stresses  are given for 

only one quadrant  of the  structure. 

Qae 3:- Discontinuous Temperature Distribution,  Flexurally Rigid Stiffeners. 

Here we consider  the  case of perfectly r i g i d  st iffeners w i t h  

s t iffener temperatures  constant a t  the value zero,  plate  temperature 

constant a t  the  value e ,  and the  structure and loading symnetrical 

about  each center  line  (Fig. 2 ) .  

To determine the  stress  resultants, we s t a r t  by assuming t h a t  a 

s ta te  of  homogeneous biaxial normal stress  exists  in  the  plate, and then 

Show t h a t  th is  assumption leads t o  a solution wbich satisfies  al l   the 

requirements of equilibrium and compatible deformations for  the elements 

of the  structure. 

Figure 5 shows the  free-body diagrams of the  stiffeners and plate 

on the assumption t h a t  the plate  stress  resultants  are 

N (x ,y)  = constant = N x  
X 

N (X,y) = constant = 

N,, ( x , Y )  = 0 

Y NY 

The plate and each element of i t   i s  obviously i n  equilibrium under this  

s t ress   f ie ld .  The unknown stress  resultants N x  and N also  act on 

the st iffener by virtue of  Newton's third law. Since the  stiffeners  are 

flexurally  rigid, mutual internal  reactions  are t o  be expected a t  the 

stiffener  junctions. These reactions  act as pairs of equal and opposite 

Y 
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forces, one appearing  as a shear  force a t  the end  of a st iffener and the 

other an equal tension  force a t  the end  of the  adjacent  stiffener. The 

forces  labeled  1/2 (T1 - N, b )  a t  the p o i n t  (a,b) i n  Figure 5 are a 

typical  pair of  such  mutual internal  reactions. The magnitude 1/2  (TI  - N, b )  

was arrived a t  by considering  the  equilibrium of the  st iffener  at  x = a .  

W4th the end reactions so obtained,  equilibrium i s  completely 

satisfied  for  all elements of Figure 5. I t  remains t o  determine  the two 

unknowns N, and Ny. These will be determined from the  condition t h a t  

the  (uniform)  elongation o f  any stiffener and the  (uniform)  elongation 

o f  the  plate edge t o  whl'ch i t   i s  attached must  be equal. Writing this 

condition  for  the edge x = 0 or a , one obtains 

l/2(T3 - N a ) b  :N - 
= [ y vNx tae]b 

A1E Eh 

Similarly  for  the edge y = o or b ,  

1 /2 (T l  - N, b ) a  N, - VN ' 

A3 E = [  , Y  t ae]a 
Eh 

Solving  simultaneously for N, and N yields 
Y 
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These values of N, and N insure  overall  compatibility of elongation 

for a st iffener and the  plate edge to  which i t  is attached.  Since  the 

stiffener and plate  strains  are uniform,  point-wise  compati.bility is  a l so  

insured.  Finally,  the edges of the  plate obviously remain straight under 

the  stress  distribution @71 i . e . ,  compatible w i t h  the  flexural  rigidity 

of the  stiffeners. We have thus  arrived a t  a stress d i s t r i b u t i o n  for the 

structure t h a t  satisfies  al l   the requirements of equilibrium and compattbility 

and which therefore must  be the  correct one. 

Y 

In the subsequent flutter  analysis  the  special case of a square 

structure ( a = b ) ,  w i t h  symmetry about  the  diagonals  as well as the  center 

lines (A, = A 3 ) ,  and w i t h  no external load (TI = T3 = 0) will be 

considered. For this  case,  equations  (30) become 
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FLUTTER ANALYSIS 

Having evaluated  the mid-plane stresses,  we can now turn t o  the 

problem of studying  the  possible kinds of transverse motion  of the  plate 

i n  the  presence of these  stresses and the  airstream, and determining  those 

circumstances under  which the motion can  be characterized as f lu t te r .  The 

analytl’cal procedure t o  be  employed i s  the same for  cases 1 and 2 (pillow- 

shaped temperature distribution with perfectly  flexible or flexurally  rigid 

s t i f feners) ,  and therefore  these two cases are  discussed  together  in a 

single  section below.  Case 3 (discontinuous  temperature  distribution 

with flexurally  rigid  stiffeners) i s  discussed i n  a separate  section. 

Cases 1 and 2 :  Pillow-Shaped Temperature Distribution,  Perfectly 

Flexible or  Flexurally Rig id  Stiffeners. 

The differential  equation and boundary conditions have already 

been presented i n  equations ( 2 )  and (3).  Here we will seek solutions of 

these  equations  in  the form 

where a and w are as yet undetermined constants and i = fl. 
Equation (32)  obviously satisfies  al l   the boundary conditions  (eq.  3). 

Since  the  differentl’al  equation ( 2 )  i s  linear any combination of solutions 

of the above form wi 11 also be a sol utl’on. 

Pq 

The  form  of solution assumed i n  equation (32), namely the product 

of a spatial  function and , ju t ,  has  been  employed by Schaeffer and Heard 

(ref .  1 )  as well  as by others  (ref. 5 and 6 ) .  In  Appendix B we attempt 

t o  show t h a t  there  is  no loss of generality  in assuming solutions of the 

above  form. 
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S u b s t i t u t i n g  equation (32),along w i t h  expressions  (eq. 8) for  the 

stress  resultants, i n t o  equation (2 ) ,  and f o r  computational  purposes 

replacing  the  infinite upper sumnation limits of equation (32)  by f in i t e  

values R and S respectively, we ob ta in :  

R S  

p=l q=l 

M N R S  

+ 1 DIT 2 1 1 1 2 apq (($1’ gmn + sin  sin EL b si- 
m,n odd p=l q=l 

M N R S  

R S  R S  
” 

a4 
K2 7 7- apq sin  sin y + + z 2 aPq cos sin = o a b 

p=l q= l  p=l q=l 
(33)  

where 
2q* a3 

X = aerodynamic pressure parameter = - Dm 
~2 = frequency parameter = $”$ u2 

and the common factor  eiut has  been cancelled. The procedures for 

determining the gmn , cmn, and jmn which appear i n  the above equation 

have already been described i n  the  previous  section. 

Equation (33) will now be solved for the a ‘ s  and w (or K 2 )  
P9 

by Galerkids  technique (ref .  7) .  To t h a t  end we write  the following system 

of equations : 

a b  
H(x,y) sin sin dy dx = 0 (34) 
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where H(x,y) stands for the  entire  left-hand  side of equation (33) .  

Substituting for H(x,y) and carrying o u t  the  integrations  indicated i n  

equation (34) one obta ins  the fol lowing system o f  equations f o r  the a ' s  
Pq 

2 2 
4 m n ~  gmn + (+I cmn1 + 5 jmn (r2- m2- 02)  (s2- n2- q2 

2 

l(m-p+r) (m-p-r) (m+p+r) (mtp-r) J[ (n-q+s) (n-q-s) (n+q+s]-(n+q-sS_) 
. . .~ .  ~ . .. -~ ". - "_ -. - 

p= 1 
Pi+ 

For r = 1 , 2 ,  ... ,R 

s = 1 , 2 ,  ... ,s 

The above equation  represents R times S linear, homogeneous, 

algebraic  equations which the unknown amplitude coefficients ars and the 

frequency  parameter K2 must satisfy.  The reader i s  reminded t h a t  the 

influence of any applied  loads and temperature distribution appears 

l'mplicitly i n  the  coefffcients gmn, cmn and jmn; and the  influence 

of the  airstream is l'n the aerodynamic pressure parameter X.  
These equations always  have the t r i v i a l  solution  arS = 0 for a l l  

combinations of r and s. This solution  represents no motion whatsoever 

of the  plate  (see eq. 32) and is  therefore of no interest. O f  interest  

are  solutions for the a,, and K2 such t h a t  some of the arS are not 

zero. Such solutions can exist  only for those  values of K2 t h a t  make 
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the  determinant A of the  coefficients of the  ars i n  equations (35) 

vanish .  Thus one arr ives   a t  an eigenvalue problem.  For  any given airstream 

(11, loads and temperature (i .e. ,  known gmn, cmn, j,,), one must solve 

for  those  values of K2 which satisfy  the equation 

A = o  

Each such K2 leads  to two values of W ,  and each value of w leads t o  

a solution (motion) of the form of equation (32). The value of w itself 

determines the temporal  form  of that  solution;  the  spatial form  of the 

solution is determined by s u b s t i t u t i n g  the  particular value of K2 into 

equations (35) and u s i n g  those  equations t o  compute the  relative magnitudes 

of the ars. The general motion of the  plate i s  a superposition of the 

component motions (each of the form of eq. 32) corresponding t o  a1 1 the 

individual  values of w satisfying  the equation A = 0. The  ahiount of 

each component present i n  any particular motion of the  plate depends, of- 

course, on the i n i t i a l  conditions whereby the motion was started. In 

this investigation we will not be concerned w i t h  any specific  init ial  

conditions.  Instead, imag in ing  that   a l l  k i n d s  of i n i t i a l  conditions  are 

conceivable, we w i  11 concern ourselves w i t h  the  values of K2 ( w )  and 

the temporal behavior of the component motions implied by these values. 

Any particular value of K2 may  be ( a )  real and negative, 

(b)  zero,  (c)  real and positive.,  or ( d )  complex. The corresponding  values 

o f  w and the  implications  regarding  the temporal behavior of the component 

motions of the  plate  are  as  follows:  (a) a real and negative K2 gives 

two purely imaginary values of W ,  one positive and  one negative. I t  t s  

seen from equation (32) that  the  positive imaginary value of w leads t o  

a component motion that is  o f  the non-osci llatory subsident type; i .e., 

eiWt becomes a negative  exponential. On the  other hand, the  negative 
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imaginary value of w leads t o  a positive  exponential and  hence represents 

a non-oscillatory  divergent component of motion. The case K2 real and 

negative will therefore be characterized by i ts  detrimental  characteristic, 

namely divergence. 

( b )  A zero  value of K2 leads t o  zero  values of W ,  which eliminates 

time from equation (32)  and therefore  represents static  buckling. 

(c)  K2 real and positive  leads t o  two real  values of w , b o t h  of 

which represent component motions of the form of simple harmonic motion, 

i . e. , ordinary  vibrazzon. 

( d )  K2 complex w i  11 lead t o  two complex va 1 ues of w , one the  negative 

of the  other. One o f  these  values of w will  have a positive imaginary 

p a r t ,  and the  corresponding component o f  motion will therefore be an oscilla- 

tory one w i t h  s u b s i d i n g  amp1 i tude. However, the  other  value o f  w w i  11 

have a negative imaginary part and will lead t o  an oscillatory motion w i t h  

ever-increasing  amplitude. This  type of motion i s  what we call f l u t t e r .  

The case K2 complex w i  11 be characterized as f t u t t e r ,  since this i s  i t s  

more detrimental consequence. 

Since  the  equation A = 0 has  more t h a n  one root ( i  .e. , more t h a n  

one value of K2 satisfying i t ) ,  several of the above types o f  component 

motions can exist  simultaneously.  If any one of them i s  of the  f lutter 

type  (case d )  , the motion w i  11 be described  as f t u t t e r .  I f  none i s  of 

flutter  type, b u t  one i s  of the  divergence  type  (case a )  , the motion w i  11 

be Characterized  as divergence. I f  none i s  of the f lu t t e r  or divergence 

type, b u t  one i s  of the s t a t i c  buckling  type (case b ) ,  the behavior will 

be described  as static  buckling. F i n a l l y ,  i f  none of  the component motions 

i s  of the f lu t t e r ,  divergence or s t a t i c  buckling  type ( i . e . ,  a l l  of the 

roots  are  real and positive  as  discussed i n  case c ) ,  then the motion i s  a 
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a superposition of ordinary  vibrations and it  will be .described as  ordinary 

vibration. 

If one is concerned only w i t h  determining the "f 1 utter boundary", 

i.e., those  physical  conditions which represent a transit ion from  a'  non- 

flutter behavior t o  a flutter behavior, i t  is evident from the above that 

this boundary is defined by any one of the K2 values  passing from real   to  

complex as the physical  conditions change. The equation A = 0. w i t h  

A expanded as a  polynomial i n  K2, has real  coefficients;  therefore 

any  complex roots for K2 come i n  complex conjugate pairs. Consequently, 

assuming that  the roots vary  continuously w i t h  a continuous variation i n  

the  physical  conditions, one  can determine the transition from non-flutter 

t o  flutter behavior by seeking those physical conditions a t  which  two 

real values o f  K2 become real and equal. 

One final p o i n t  is worth mentioning before we pass t o  a specific 

case. By examining equations (35) i t  is evident that  these  equations can 

be separated i n t o  two dis t inct  groups: those  equations corresponding to  

s = 1,3,5. . . contain only those ars w i t h  second subscript odd; and 

those  equations resulting from s = 2,4,6, .  . . contain only those  ars 

w i t h  second subscript even. Consequently the equation A = 0 can  be 

factored  into two equations; 

where A '  is the  determinant of the  coe'fficients of the ars w i t h  second 

subscript odd, and A'' the determinant formed from the  coefficients of 

those  ars w i t h  second subscript even. The matrices  leading to  A '  and 

A" are each of smaller  order than the  matrix  leading t o  A.  The roots 

of the  equation A '  = 0 will i n  general  lead to  motions which are symmetric 
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about  the  center  line of the  plate  parallel t o  the  airstream; on the  other 

hand the  equat$on A" = 0 i n  general leads t o  motions which are a n t i -  

symmetric,about this center  line and for which this center  line forms a node. 

ture 

and 

Equations (35)  apply t o  the  general  case o f  a pfllow-shaped tempera- 

d i s t r i b u t i o n  and a rectangular  structure w i t h  symmetry of structure 

loading about each center  line, and w i t h  perfectly  flexible or flexural 

r i g i d  st iffeners.  Numerical results  will be presented for the  special 

case  considered ear l ier  i n  connection w i t h  the  stress  analysis problem, 

i . e . ,  a square  structure w i t h  no external load and symmetry about the 

d iagonals  as well as  the  center  lines. Equations (35) are  specialized ' t o  

this case by setting a=b and by substituting for gmn, cmn, jmn the 

fol lowing expressions: 

gmn = aeEh Gmn 

cmn = aeEh Cmn 

jmn = aeEh J,, 

where G m n ,  C m n ,  Jmn are  defined,  implicitly, by equations (15) for the 

case of perfectly  flexible  stiffeners or by equations (26) for the  case of 

flexurally r i g i d  stiffeners-. W i t h  these  substitutions made, and introducing 

a thermal-load parameter q~ defined by 

one obtains  the fo l lowing  reduced form of equations (35): 

34 



p+r = even 
q+s = even 

m,n odd 

R 
(38) 

p=l 
Pfr 

for r = 1 , 2 ,  ... ,R 

s = 1,2,. . . ,s 

For a square plate i t  seems plausible  to assume that those  spatial 

modes  which are symmetrical about the  center  1  i nes para1 le1 t o  the  airstream 

will govern; i . e . ,  detrimental behavior (divergence, s t a t i c  buckling or 

f lut ter)   wi l l  occur a t  lower a i r  speeds or lower temperature i n  these 

modes t h a n  i n  the anti-symmetric modes.* Therefore  only  those  equations 

of equation (38) corresponding t o  odd values o f  s will be  used i n  

the computations. Taking  six terms in  the flow direction ( r  = 1,2, ... 6 )  

and three terms i n  the  cross-flow  direction (s  = 1,3,5), 

w i t h  M = N = 59, P = Q = 1 ,  and x 1  = 1,  one obtains  the 

eighteen  simultaneous  equations shown i n  Table 2 for  the case of perfectly 

flexible  st iffeners and i n  Table 3  for  the case of flexurally r i g i d  st iffeners.  

(To obtain  these  equations i t  was f i r s t  necessary t o  solve  the  stress 

analysis problem by the procedure a1 ready described  for  cases 1 and 2 i n  

the Drevious section.) 

"Results  supporting this  contention may  be found i n  reference  1. 
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The eigenvalues (K2) of these  matrices were determined by 

J .  G .  F.  Francis I Uni tary-Tri angul a r  or QR Transformati on Method (ref .8) 

for  selected  constant  value of the thermal-load parameter JI and varying 

values of the aerodynamic-pressure parameter x . 
Figure 8 shows a typical  set of results  obtained by this method. 

Plotted i n  Figure 8 are  the  real  parts of the  eigenvalues K2 versus 

the aerodynamic pressure parameter x for  the  case of perfectly  flexible 

st iffeners and JI = 12.  I t  i s  seen t h a t  the p l o t  i s  a series of loops, 

the number depending on the  values of R and S. In the  case of R = 6 

and S = 5, there  are nine loops, corresponding t o  eighteen  eigenvalues; 

however, only three loops are shown for  the sake of simplicity i n  Figure 8 

Each loop has a stem a t  the peak (e.g. p o i n t  c l )  representing  the  value 

of A = h  a t  which two real  roots become equal and above  which 

they become  complex conjugates. Figure 8 shows a l l  of the types of 

values of K2 discussed ear l ier .  The p o i n t  labeled "a" and a l l  such 

points t o  the  lef t  of the A axis correspond t o  divergence  (case a :  

K2 real and negative). The p o i n t  labeled "b" corresponds t o  s t a t i c  

buckll'ng (case b:  K2 zero). All points  labeled  'IC", i . e . ,  a l l  pojnts 

t o  the  right of the x axis and below the peaks  of respective  loops, 

correspond t o  ordinary vibration  (case c: K2 real and positive). All 

points, such as "d" ,  which l i e  on the stems  emanating from the peaks 

correspond t o  f lutter  (case d:  K2.complex). A peak p o i n t  such as l'cl I' 

represents  the  transition from a non f l u t t e r  t o  a flutter  character of 

a p a i r  of roots. 

c r i  t ical  

The f i r s t  loop has the lowest peak and therefore determines  the 

lowest f l u t t e r  speed. Being furthest t o  the   l e f t   i t   a l so  determines  the 

f i r s t  occurrence of s t a t i c  buckling or divergence. Thus the f i r s t  loop 
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alone is of practical  significance  for  the purposes o f  this jnvestigation, 

and for this reason the upper portions of the  other loops were not  determined 

precisely.  Figure 9(a)  shows how these f i r s t  loops vary w i t h  J, for  the 

case of perfectly  flexible  stiffeners, and Figure lO(a) does the same for 

the  case of flexurally r i g i d  s t i f feners .   I t   i s  seen t h a t  for sufficiently 

smal 1 J, there i s  no intersection with the x axis, i .e , neither  static 

buckling nor divergence can occur. As J, increases  the peak ( f lu t te r  

speed) i s  1 owered , and eventual  ly  the loop does intersect  the  x-axis, 

implying t h a t  s ta t ic  buckling and divergence can occur. 

Figures 9 ( b )  and 10(b) summarize the  important  information 

implied in  Figures 9 ( a )  and lO(a). The curve labeled A = xCr shows 

how the  ordinate x of the peak point c '  of the f i r s t  loop  varies with 

J, . This  curve represents  the boundary between those combinations of 

x and J, (above the  curve) producing f lu t t e r  and those combinations of 

x and J, (below the  curve) which do n o t  produce f lu t t e r .  The non-flutter 

region (below the curve labeled A = xCr )  i s  divided into  sub-regions, 

one representing  those combinations of x and J, which are capable of 

supporting  only  ordinary  vibrations, and two others  representing  those 

combinations of x and J, which are capable of supporting a divergent 

type o f  behavior. The curve labeled "s ta t ic  buckling" i s  the  locus  in 

the x - J, plane of points such as "b" where the f i r s t  loop intersects 

the A a x i s ;  i t  constitutes a boundary  between the  sub-regions. 
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Case 3: Discontinuous Temperature Distribution,  FlexurallyRiqjd . _ =  ." . . . . Sti~ffe~n.ers . "_ 

The stress  analysis  for  this  case showed that  the  state of s t ress  

i n  the  plate was  one  of  homogeneous biaxial normal stress  (see eq. 30). The 

f lu t t e r  analysl's for  this  si tuation was  done i n  reference 1 (where i t  

corresponds t o  their  case JI = 0 ) ,  and  therefore some numerical results 

for   this  can  be obtained from those of reference 1 by properly  re-labeling 

the  parameters. Such numerical results  will be presented for  the case 

of a square plate ( a = b )  w i t h  four  identical  stiffeners and no external 

load. For this  case equation  (31)  gives: 

The top  curve of Figure 6 of reference 1 gives X c r  for this case  as a 

function of the  external load  parameters R and R , which are 
xO YO 

defined by 

For N x  and N as given by equation (31 ) ,  R and R become 
Y xO YO 

where JI and x 1  are defined by equations  (37) and (14 )  respectively. 

Then the  f lut ter  boundary for  this case can  be plotted by using the top  
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curves of Figure 6 of reference  1 and replacing  the 1 abel s R and R 
xO yo 

i n  accordance w i t h  the above equation. The result  is shown i n -  Figure 11 ( a ) .  

The curve is  terminated a t  point T ,  which corresponds t o  the p o i n t  where 

f lu t te r  and s t a t i c  buckling  coalesce. Reference 1 d i d  not give  the s t a t i c  

buckling curve and so i t  is  no t  given i n  Figure l l ( a ) .  However, the  points 

where the  s ta t ic  buckling curve intersects  the $-axis correspond t o  

s t a t i c  buckling under  uniform biaxial compression i n  the absence of wind,  

and therefore they were readily  obtained from reference 9 and are shown i n  

Figure l l ( a )  as  points P and Q. Figure l l ( b )   i s  a replot of Figure l l ( a )  

for  the same values of h l  and v t h a t  were  used i n  presenting  results 

for cases 1 and 2 ,  namely h l  = 1.0 and v = 0.3. 

Summary of Numerical Results 

Figure 1 2  summarizes ( i n  curves 1 abeled 1 2 and 3)  the numerical 

f lut ter   resul ts  discussed above.  Curves (1 )  and ( 2 )  are b o t h  for the  case 

of a sinusoidal p i  1 low-shaped temperature distribution b u t  with differing 

edge-stiffener  flexibility: curve (1 )  corresponds t o  the  perfectly 

flexible  case and curve ( 2 )  t o  the  flexurally r i g i d  case. Curve ( 3 )  and 

points P and Q are f o r  the  discontinuous  temperature  distribution w i t h  

flexurally rigid edge-stiffeners. (Curves ( 1 ) .  ( 2 )  and ( 3 )  correspond t o  

cases 1 ,  2 ,  and 3 respectively.) For comparison, the  results of Schaeffer 

and Heard (ref .  1 )  for  an unstiffened  plate w i t h  a pillow-shaped (parabolic) 

temperature d i s t r i b u t i o n  are presented  as curve (0) .  

Discussion of  Numerical Results 

From the sumnary  of numerical results ( F i g .  1 2 )  or from the  individual 

results (F igs .  9 ,  10, 11 and Fig.  4 o f  Ref. 6 ) ,  i t  i s  seen t h a t  the  critical 

value of X for  flutter  decreases as the temperature parameter JI increases. 
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This i s  t o  be expected because of the compressive stresses induced i n  the 

plate by the  temperature distribution. 

To see i n  detail  the  effects of different boundary conditions or 

different temperature distributions, i t   i s  advantageous t o  study  the  curves 

of Figure 1 2  i n  adjacent  pairs. 

First  consider curves (0) and ( 1 ) .  These are both for  the same 

pillow-shaped  temperature distribution  (if we neglect  the small difference 

between the s inusoida l  and the  parabolic  shapes), and d i f fe r  only by 

virtue of the  fact t h a t  curve (0) i s   fo r  completely  unstiffened edges 

while  curve (1 )  i s   fo r  edge stiffeners of zero flexural  stiffness b u t  of 

f inite  axial   st iffness.  The  marked lowering of curve (1) relative t o  

curve (0 )  i s  undoubtedly due t o  the  higher compressive stresses  arising 

i n  the  plate due t o  the  additional  restraint  against thermal expansion 

provided by the  axial  stiffness of the edge stiffeners.  

Now consider  curves ( I  ) and ( 2 ) .  These are  for  the same p i 1  low- 

shaped temperature distribution and the same axial  stiffness of st iffeners,  

and differ only in  the  flexural  stiffness of the  stiffeners, with curve ( 2 )  

corresponding t o  infinite  flexural  stiffness  (stiffeners held straight) 

and curve ( 1 )  corresponding t o  negll’gible  flexural  stiffness. Again, the 

lowering of curve ( 2 )  relative t o  curve (1 )  can  be ascribed t o  the  higher 

compressive stresses  resulting from the  higher  constraint  against thermal 

expansion of the  plate. 

Finally,  consider  curves ( 2 )  and ( 3 ) .  These correspond t o  the same 

edge-stiffener  conditions  (finite ax ia l  st iffness,   infinite  f lexural 

s t i f fness)  and same stiffener temperature of zero, and differ  only  in 

respect t o  the  plate  temperatures, with curve ( 2 )  corresponding t o  a 

pillow-shaped  temperature distribution of m m i m w n  value e , while 
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curve (3)  corresponds t o  a plate temperature distribution uni fom a t  t h e  

value e.  In the former case  the  cooler  outer  portions of the  plate tend 

to  restrain partly the thermal expansion of the  inner  portion o f  the  plate, 

whereas i n  the  latter  case this rest ra int  is absent. As a result  the  plate 

as  a whole tends to  undergo more thermal expansion and hence develops 

higher compressive stresses when this thermal expansion is  restrained by 

the st iffeners.  Thus the lowering of curve (3 )  w i t h  respect t o  curve ( 2 )  

i s  t o  be expected. 

For II, = 0 there are no thermal stresses i n  the  plate  regardless 

of the  presence or absence of edge-stiffeners. Consequently, a l l  four 

curves of Figure 1 2  emanate from the same p o i n t  on the x axis. 

41 



CONCLUDING REMARKS 

A theoretical  analysis has  been  made of the  supersonic f lu t t e r  of 

a rectangular  plate w i t h  edge stiffeners under non-uniform temperature 

d i s t r i b u t i o n ,  producing midplane thermal stresses. Numerical resul ts ,  

obtained for the  case of  a square  plate, show t h a t  the  presence of the 

st iffeners has a marked effect  on the midplane stresses and  therefore 

on the f lu t t e r  speed. This effect was found  t o  depend significantly 

on the ax ia l  st iffness of the  stiffeners, the flexural  stiffness of the 

s t i f feners ,  and the k i n d  of temperature distribution. 
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APPENDIX A 

L IST  OF SYMBOLS 

Remarks: i )  The subscript 1 or 3 on a symbol for a st i f fsner-  

related  quantity  identifies  the  stiffener  location as x=o,a or y=o,b 

respectively. i i )  The Fourier  coefficients of known quantities  (loads, 

thermal strains),  and combinations of such coefficients  are  generally 

represented by capi ta l   le t ters ,  while  the  Fourier  coefficients of in i t ia l ly  

unknown quantities  (internal  stress,etc.)  are dengted by small l e t te rs .  

i i i )  A parenthetical  reference  to a n  equation number i n  the l i s t  below 

will  indicate  the equation i n  which the symbol i s  f i r s t  used. 

a 

a 
P9 

Bn 

'rnn 

'n 

'n 

plate dimension (see F ig .  1 )  

Fourier  coefficients i n  series expansion for 

lateral  deflection w(x ,y , t ) ,  (eq. 32). 

Fourier  coefficient i n  series expansion for  lateral 

deflection w(x ,y , t ) ,  (eq. B-1). 

Stiffener  cross-sectional  areas 

See equation (10)  

Plate  dimension (see F i g .  1 )  

Fourier  coefficients i n  series expansion for 

Nl(y) and' N3(x)  respectively, (eq. 7 )  

Bn '/a0 Eh 

Fourier  coefficients i n  series exDansion for 

NY(x,y), (eq. 8) 

Fourier  coefficient i n  series expansiqns for 

NY(o,y).  (eq. 8 )  

cn I /a8 Eh 
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'mn See equation (36) 

D Eh 3/[ 12 (1 -v2)] 

el  (y) and e3(x)  Stiffener thermal strains 

ex(x,y) and e ( x , ~ )  Plate thermal strains 
Y - 

Em n 

gm n 

Gmn 
h 

Hm n 

j m n  

See equation  (21) 

See equation (sa)  

Fourier  coefficients i n  series expansion for 

Nx(x,y) ,  (eq. 8 )  

Fourier  coefficients i n  series expansion 

for NX(Xyo) ,  (eq. 8) 

See equation (36) 

Thickness of  plate 

See equation (21 ) 

Fourier  coefficients i n  series expansion for 

N x y ( X ' Y )  Y (eq. 8) 

Frequency parameter, v h a 4  w2/Dn4 

See equation ( s a )  

Fourier  coefficients i n  series expansion for 

prescribed boundary curvatures,  (eq. 17)  

Aerodynamic forces - kq* /dmI  a w / a x  

Summati on indexes 

Upper limit of Fourier series 

Mach number 

Summa t i  on index 

Upper 1 imi t of Fourier  series 
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r 

R 

Rn' R m " '  

R 
xO 

Y O  
R 

S 

S 

Tmn 
T,,', Tm'" 

t 

External r u n n i n g  tensions,  force per u n i t  length 

Plate  stress  resultants,  for per u n i t  length 

Summation index 

Stiffener  cross-sectional  tensions 

Integers  appearing  in  sinusoidal  temperature 

distribution, (eq. 1 )  

(1 /2) P V 2  

Summati on i ndex 

Summati on index 

Upper 1 imi t of Fourier  series 

See equation (sa) 
External load parameter ( r e f .   l ) , -  Nx a2/a2D 

External load parameter ( ref .  1 ), - N q2/a2D 

Sumat ion  index 

Upper limit of Fourier  series 

Fourier  coefficient  in  series expansion for  the 

stiffener  cross-sectional  tensions 

See equation (21 ) 

Temperature distribution (eq. 1 )  

External resultant 1 oadi ng 

Fourier  coefficient  see equation (5) 

Fourier  coefficients i n  series expansion for thermal 

strain  discontinuities between stiffener and plate 

edge, (eq. 5) 

T i  me 

Y 
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V 

A '  I 

A 

x 1  

x 

x and y components of displacements i n  plate 

Velocity of a i r  stream 

Fourier  coefficients i n  series eypansion for 

ae /ax etc.  (eq.  16) 

Lateral  plate  deflection 

Cartesian  co-ordinates 

Y 

Coefficient of thermal expansion of plate and 

st iffeners 

See equation (21)  

See equation (21 ) 

See equation (21)  

See equation (21 ) 

See equation (21 ) 

See equation (21 ) 

Kronecker's delta 

See equation (21)  

Determinant of the  coefficient of a,, 

Determinant of the  Coefficients of those a,, 

w i t h  second subscript odd. 

Determinant of the  coefficients of those ars 

w i t h  second subscripts even 

Temperature r i se  a t  the  center of plate 

Area-ratio  parameter, 4ah/r2A1 (eq. 14)  

Aerodynami c pressure  parameter, 

2q* a3/D {m (eq. 33) 
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A cr 

*mnl *mn 
I 1  

U 

V I  mn 'mn 
I 1  

71 mn 
P 

J, 

w 

Critical  flutter speed 

See equation (21 ) 

Mass density o f  plate 

See equation (21 

Poissons ratio 

See equation (21 

See equation (21 

Mass density o f  

cYeEh/Dn.* , (eq. 37 )  

Circular  frequency, radians per unit time 
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APPENDIX B 

The purpose of this appendix i s  t o  justify  heuristically  the, 

assumption macle i n  the body of the paper to  the  effect t h a t  the aeneral 

motion o f  the  plate can be represented 3s a sum of terms, each of  the type 

shown on the r i g h t  side o f  equation (32). 

To t h a t  end we s t a r t  by assuming a more general form for the 

motion , namely 

R S  

p=l  q=l  

i n  w h i c h  the a ( i n  contrast t o  the a ' s  of eq. 32) are undetermjned 

functions o f  time. From the  theory o f  Fourier ser ies ,  i t  is known t h a t  

equation B-1 w i t h  sufficiently  large R and S i s  capable of representing 

the  lateral motion of a simply supported  rectangular  plate t o  any desired 

degree of accuracy. 

Pq Pq 

Substituting  equation B-1 i n t o  the  basic  differential  equation ( 2 )  

for the motion o f  the  plate,  replacing N x y  

series (eq. 10)  and II by i t s  exnression - 2q* ( a w A a x ) / m  gives: 
Ny' Nxy by their  Fourier 

+ E  2 x 1 a P9 ( t)  cos y cos y cos y cos k:) (TI jmn J 
m,n odd p= l  q=l 
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where ( t )  stands  for  the second der4 vative of ii ( t )  w i t h  yesp,eqt t o  

time. Multiplying this  equation by sin (rix)/a ; in  (ssy)/b, where 

r and s are any integers, and integrating  aver  the whole raglan of the 

plate, one obtains  the  following system of ordinary  differential equatiorjs 

for  the  functions a (t): 

8*  

P9 P9 

P9 

M N - R '  S c 

Q+S 
even 

p= 1 
pfr 

for r = 1 ,2 ,  ... ,R 

s = 1,29...,s 

The above equations  are  linear and homogeneous differential  equations 

w i t h  constant  coefficients. Such a system i s  known t o  have, I n  

general, a solution of the fol lowing form: 

where the  are  the  roots of a characteristic equation  obtained by 

equating t o  zero  the  determinant of the  coefficients of a certain system 

of  homogeneous algebraic  equations. For any given value of m, the  relative 
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magnitudes o f  the a (m) are  determined by subs t i t u t i ng   t he   pa r t i cu la r  

value  of wm i n t o   t h i s  system o f  algebraic  equations. 
P9 

I n  view o f  equation B-4, the  general  motion,  equation B-1, has the 

form 

w(x,y,t) = C f f a P9  ('1 s i n   s i n  y} e i  urn' 
m p=l  q=l 

(B-5) 

The r i g h t  hand s ide o f  t h i s   e q u a t i o n   i s  a sum of terms, each of the form 

o f   t h e   r i g h t  hand s ide o f  equation (32).  
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TABLE 1 

n 
- 

1 
3 
5 
7 
9 

11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 
51 
53 
55 
57 
59 

Results of Solving  Simultaneous  Equations 13 and 24 

for the Case M = 59, X 1  = 1, P = Q = 1 

(a) 
. .  "" -~ 

I .  . .  

Case 1 

'n 

" ". 

"_ - ". ~"._i" "" .. 

0.201 4886 
-0.0051 11 925 
-0.001 301  78 
-0.000493739 
-0.0002351 824 
-0.0001292827 
-0.0000783595 
-0,0000509683 
-0.0000349673 
-0.0000250098 
-0.00001 84955 
-0.00001 40577 
-0.00001093168 
-0.00000866683 
-0.000006986196 
-0.00000571312 
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0.01 275479 
0.01 189826 
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0.005768187 
0.005551 599 
0.00635050 
0..00$163275 
Q.004988555 
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TABLE 2 .  

System of  Equations  for  the Unknown Amplitude  Coefficients.  apq.  Obtained f o r  Dynamic Behavior o f  Square P la te  

f o r  Case 1: Pll lou-Shaped  Tenmeratwe  Distribution,  Stiffeners  Perfectly  Flexlble,  I !  = I .  P = rl = I .  M = N - 59, 
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Ff gur e 1. Structure 
N3 (x> 

and Loading About  Each Centerline). 
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Figure 2 .  Resultant Edge Loads Considered for  the Case of Flexurally  Rigid  Stiffeners. 
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Figure 3. Notation  for  Stiffener and Plate Forces. 
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Figure 4 .  Wtation f o r  Thermal Strains. 

Figure 5 .  Free-body Diagrams for  Case 3: piscontinuous 
Temperature with  Flexurally  Rigid  Stiffeners. 
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Figure 6.  P l a t e   S t r e s ses   and   S t i f f ene r   Tens ions  f o r  Case 1: Pillow-Shaped 
(s inusoidal)   Temperature   Distr ibut ion,  With P e r f e c t l y   F l e x i b l e  
S t i f f e n e r s .  X1 = l,u = 0 . 3 ,  W = N = 59.  
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Figure 8. Typical  Graph  Showing Real P a r t s   o f   t h e   R o o t s  K2 as a f u n c t i o n  of X 
f o r  a Fixed Value of ILJ (-12)  and Given Edge C o n d i t i o n s   ( S t i f f e n e r s  
P e r f e c t l y   F l e x i b l e ,  No E x t e r n a l  Load). 
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Figure  9,a)Frequency  Curves  and  b)  Behavior Regimes fo r  Square Plate with  no  External ly   Applied  Load,  for Case 1: 
P e r f e c t l y   F l e x i b l e   S t i f f e n e r s ,   P i l l o w - s h a p e d   T e m p e r a t u r e   D i s t r i b u t i o n .  R = 6 ,  S = 5,  M = N = 59, 
11 = 1, v = 0 . 3 .  
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F i g u r e  10. a)Frequency  Curves  and (b) Behavior  Regimes fct S q u a r e   P l a t e   w i t h   n o   E x t e r n a l l y  
A p p l i e d   L o a d s   f o r   t h e  Case 2 :   F l e x u r a l l y  Rig id  S t i f feners ,   P i l low-Shaped   Tempera ture  
D i s t r i b u t i o n .  R = 6 ,  S = 5 ,  M = N = 59,  X1 = 1, v = 0.3. 
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Figure 11. ( a )   F l u t t e r  Boundary (from Lef.  1) 
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Curve (0):  Parabolic  Temperature  Distribution  with no Edge 
s t i f f ene r s   (Re f .  1) 
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Figure 12. Surrmary of Present   Kesul ts  and  Comparison with  those  of  Reference 1. 
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